From Simple English Wikipedia, the free encyclopedia
Implicit derivatives are derivatives of implicit functions . This means that they are not in the form of
y
=
f
(
x
)
{\displaystyle y=f(x)}
(explicit function), and are instead in the form
0
=
f
(
x
,
y
)
{\displaystyle 0=f(x,y)}
(implicit function). It might not be possible to rearrange the function into the form
y
=
f
(
x
)
{\displaystyle y=f(x)}
. To use implicit differentiation, we use the chain rule ,
d
t
d
x
=
d
t
d
y
d
y
d
x
{\displaystyle {\frac {\mathrm {d} t}{\mathrm {d} x}}={\frac {\mathrm {d} t}{\mathrm {d} y}}{\frac {\mathrm {d} y}{\mathrm {d} x}}}
If we let
t
=
f
(
y
)
{\displaystyle t=f(y)}
, then,
d
d
x
f
(
y
)
=
d
d
y
f
(
y
)
d
y
d
x
=
f
′
(
y
)
d
y
d
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}f(y)={\frac {\mathrm {d} }{\mathrm {d} y}}f(y){\frac {\mathrm {d} y}{\mathrm {d} x}}=f'(y){\frac {\mathrm {d} y}{\mathrm {d} x}}}
x
=
6
y
2
+
5
x
4
−
y
3
{\displaystyle x=6y^{2}+5x^{4}-y^{3}}
1
=
6
d
d
x
y
2
+
20
x
3
−
d
d
x
y
3
{\displaystyle 1=6{\frac {\mathrm {d} }{\mathrm {d} x}}y^{2}+20x^{3}-{\frac {\mathrm {d} }{\mathrm {d} x}}y^{3}}
Which we can work out to be equivalent to, using the above,
1
−
20
x
3
=
6
⋅
2
y
d
y
d
x
−
3
y
2
d
y
d
x
{\displaystyle 1-20x^{3}=6\cdot 2y{\frac {\mathrm {d} y}{\mathrm {d} x}}-3y^{2}{\frac {\mathrm {d} y}{\mathrm {d} x}}}
Then we can isolate
d
y
d
x
{\displaystyle {\frac {\mathrm {d} y}{\mathrm {d} x}}}
1
−
20
x
3
=
d
y
d
x
[
12
y
−
3
y
2
]
{\displaystyle 1-20x^{3}={\frac {\mathrm {d} y}{\mathrm {d} x}}\left[12y-3y^{2}\right]}
Then divide to get,
1
−
20
x
3
12
y
−
3
y
2
=
d
y
d
x
{\displaystyle {\frac {1-20x^{3}}{12y-3y^{2}}}={\frac {\mathrm {d} y}{\mathrm {d} x}}}