Jump to content

Lucy Joan Slater

From Simple English Wikipedia, the free encyclopedia

Lucy Joan Slater (5 January 1922 – 6 June 2008) was a British mathematician who studied mathematical functions. Many mathematical identities have been named after her.[1][2] For example, there is the Jackson-Slater identity[3] and the Rogers-Ramanujan-Slater identity.[4][5][6][7] She is also known for her books about special functions[8][9] and Fortran.[10][11][12]

[change | change source]

References

[change | change source]
  1. Andrews, G. E., Knopfmacher, A., Paule, P., & Prodinger, H. (2001). -Engel series expansions and Slater's identities. Quaestiones Mathematicae, 24(3), 403-416.
  2. Hikami, K., & Kirillov, A. (2006). Hypergeometric generating function of 𝐿-function, Slater’s identities, and quantum invariant. St. Petersburg Mathematical Journal, 17(1), 143-156.
  3. Weisstein, Eric W. "Jackson-Slater Identity." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Jackson-SlaterIdentity.html
  4. Mc Laughlin, J., Sills, A. V., & Zimmer, P. (2008). Rogers-Ramanujan-Slater Type Identities. the electronic journal of combinatorics, 1000, 15-31.
  5. Sills, A. V. (2007). Identities of the Rogers–Ramanujan–Slater type. International Journal of Number Theory, 3(02), 293-323.
  6. McLaughlin, J., & Sills, A. V. (2008). Ramanujan–Slater type identities related to the moduli 18 and 24. Journal of Mathematical Analysis and Applications, 344(2), 765-777.
  7. McLaughlin, J., & Sills, A. V. (2008). Combinatorics of Ramanujan-Slater type identities. In Combinatorial Number Theory: Proceedings of the Integers Conference 2007' (p. 125).
  8. Slater, Lucy Joan (1960), Confluent hypergeometric functions, Cambridge, UK: Cambridge University Press.
  9. Slater, Lucy Joan (1966), Generalized hypergeometric functions, Cambridge, UK: Cambridge University Press.
  10. Fortran programs for economists, Cambridge University Press, 1967
  11. First steps in basic Fortran, London: Chapman & Hall, 1971
  12. More Fortran programs for economists, Cambridge University Press, 1972

Other websites

[change | change source]