Jump to content

7000 (number)

From Simple English Wikipedia, the free encyclopedia
← 6999 7000 7001 →
Cardinalseven thousand
Ordinal7000th
(seven thousandth)
Factorization23× 53× 7
Greek numeral,Ζ´
Roman numeralVMM, or VII
Unicode symbol(s)VMM, vmm, VII, vii
Binary11011010110002
Ternary1001210213
Quaternary12311204
Quinary2110005
Senary522246
Octal155308
Duodecimal407412
Hexadecimal1B5816
VigesimalHA020
Base 365EG36
ArmenianՒ

7000 (seven thousand) is a natural number. It is between 6999 and 7001.

Important numbers 7001–7999

[change | change source]

7001 to 7099

[change | change source]

7100 to 7199

[change | change source]
  • 7103 – a Sophie Germain prime and a sexy prime with 7109
  • 7106 – an octahedral number[3]
  • 7109 – a super-prime sexy prime with 7103
  • 7121 – a Sophie Germain prime
  • 7140 – a triangular number, and a pronic number. Since 7140/2 = 3570, 3570 is also a triangular number and tetrahedral number[4]
  • 7151 – Sophie Germain prime
  • 7155 – the number of 19-bead necklaces (turning over is allowed) where complements are the same[5]
  • 7187 – safe prime
  • 7192weird number[6]
  • 7193 – Sophie Germain prime, super-prime

7200 to 7299

[change | change source]

7300 to 7399

[change | change source]
  • 7316 – the number of 18-bead binary necklaces with beads of 2 colors where colors can be swapped, but turning over is not allowed[12]
  • 7338 – Fine number[13]
  • 7349 – Sophie Germain prime
  • 7351super-prime, cuban prime of the form x = y + 1[1]
  • 7381 – triangular number
  • 7385Keith number[14]
  • 7396 = 862

7400 to 7499

[change | change source]

7500 to 7599

[change | change source]

7600 to 7699

[change | change source]
  • 7607 – safe prime, super-prime
  • 7612 – decagonal number[10]
  • 7614 – nonagonal number
  • 7626 – triangular number
  • 7643 – Sophie Germain prime, safe prime
  • 7647 – Keith number[14]
  • 7649 – Sophie Germain prime, super-prime
  • 7691 – Sophie Germain prime
  • 7699super-prime, emirp, the sum of first 60 primes, the first prime above 281 to be the sum of the first k primes for some k

7700 to 7799

[change | change source]
  • 7703 – safe prime
  • 7710 = number of primitive polynomials of degree 17 over GF(2)[18]
  • 7714square pyramidal number[19]
  • 7727 – safe prime
  • 7739 – member of the Padovan sequence[20]
  • 7741 = number of trees with 15 unlabeled nodes[21]
  • 7744 = 882, square palindrome not ending in 0
  • 7750 – triangular number
  • 7753super-prime
  • 7770 – tetrahedral number[4]
  • 7776 = 65, number of primitive polynomials of degree 18 over GF(2)[18]
  • 7777 – Kaprekar number,[11] repdigit[22]

7800 to 7899

[change | change source]
  • 7810ISO/IEC 7810 is the ISO's standard for physical characteristics of identification cards
  • 7821 – n=6 value of
  • 7823 – Sophie Germain prime, safe prime, balanced prime
  • 7825magic constant of n × n normal magic square and n-Queens Problem for n = 25. It is also the first counterexample in the Boolean Pythagorean triples problem.
  • 7841 – Sophie Germain prime, balanced prime, super-prime
  • 7875 – triangular number
  • 7883 – Sophie Germain prime, super-prime
  • 7897 – centered heptagonal number

7900 to 7999

[change | change source]

Prime numbers

[change | change source]

There are 107 prime numbers between 7000 and 8000:[25][26]

7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993

References

[change | change source]
  1. 1.0 1.1 "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  2. "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  3. "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  4. 4.0 4.1 "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  5. Sloane, N. J. A. (ed.). "Sequence A000011 (Number of n-bead necklaces (turning over is allowed) where complements are equivalent)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. 6.0 6.1 "Sloane's A006037 : Weird numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  7. "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  8. 8.0 8.1 "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  9. "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  10. 10.0 10.1 10.2 "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  11. 11.0 11.1 "Sloane's A006886 : Kaprekar numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  12. Sloane, N. J. A. (ed.). "Sequence A000013 (Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. Sloane, N. J. A. (ed.). "Sequence A000957 (Fine's sequence (or Fine numbers): number of relations of valence > 0 on an n-set; also number of ordered rooted trees with n edges having root of even degree)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-01.
  14. 14.0 14.1 14.2 "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  15. "Sloane's A005898 : Centered cube numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  16. "Sloane's A002182 : Highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  17. "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  18. 18.0 18.1 Sloane, N. J. A. (ed.). "Sequence A011260 (Number of primitive polynomials of degree n over GF(2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  19. "Sloane's A000330 : Square pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  20. "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  21. Sloane, N. J. A. (ed.). "Sequence A000055 (Number of trees with n unlabeled nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  22. Sloane, N. J. A. (ed.). "Sequence A010785 (Repdigit numbers, or numbers whose digits are all equal)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  23. "7919". The Prime Pages. University of Tennessee. Retrieved April 25, 2017.
  24. "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  25. Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  26. Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.